- Carrell, H. L., Shieh, H.-S. & Takusagawa, F. (1981). The Crystallographic Program Library of the Institute for Cancer Research. Fox Chase Cancer Center, Philadelphia, PA, USA.
- Davies, E. K. (1983). *The CHEMGRAF Suite*. Oxford Univ. Computing Laboratory, Oxford, England.
- Glusker, J. P. (1980). Acc. Chem. Res. 13, 345-352.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, B. (1974). Acta Cryst. B30, 2056-2057.

Acta Cryst. (1993). C49, 1735-1737

Diphenylbis(2-pyridinethiolato)tin(IV)

RALF SCHMIEDGEN, FRIEDO HUBER* AND HANS PREUT

Lehrstuhl für Anorganische Chemie II, Universität Dortmund, Otto-Hahn-Strasse 6, D-4600 Dortmund 50, Germany

(Received 12 November 1992; accepted 17 March 1993)

Abstract

The polyhedron around tin in the title compound is a distorted trapezoidal bipyramid with the two C(phenyl) atoms in axial positions. The trapezoidal plane is formed by the two 2-pyridinethiolato residues which act as bidentate ligands with *cis* Sn—S and *cis* Sn—N bonds. Sn—N coordination is indicated by short intramolecular Sn—N distances [Sn-N(1) = 2.636 (4), Sn-N(2) = 2.698 (4) Å]. The axial C atoms are shifted towards the half-sphere occupied by two N atoms resulting in a C—Sn—C angle of 125.5 (1)°. No short intermolecular interactions are observed.

Comment

Predictions of the coordination number of tin in diorganotin complexes with S,N chelate ligands from ¹¹⁹Sn NMR shift data are, in contrast to other types of organotin compounds, still unreliable since knowledge of the structure of such compounds is insufficient. To improve this situation we started to study the structures of various types of diorganotin compounds with S,N ligands, for instance, diorganobis(2-pyridinethiolato)tin(IV) compounds, both in solution and in the solid state. From IR and Mössbauer spectra, a distorted octahedral coordination polyhedron could be inferred, but a decision as to whether the chelate ligands are arranged *cis* or *trans* was only possible by single-crystal structure determination. We report here the structure of the

Fig. 1. The title molecule and numbering scheme.

Fig. 2. Stereoscopic view of the unit cell.

title compound which was first prepared by Mullins (1979).

The polyhedron around Sn in $Ph_2Sn(2-SPy)_2$ (2-SPv = 2-pyridinethiolate) corresponds to that found in "Bu₂Sn(2-SPy-5-NO₂)₂ (Domazetis, James, Mackay & Magee, 1979). It is a distorted trapezoidal bipyramid with S(1), S(2), N(1) and N(2) in the trapezoidal plane, and the two C(phenyl) atoms in apical positions. The trapezoidal plane containing the two 2-SPy ligands and tin is nearly planar. The bond distances Sn-N(1) and Sn-N(2) [mean 2.667 (4) Å] are appreciably shorter than the sum of the appropriate van der Waals radii of 3.75 Å (Bondi, 1964) and indicate the bidentate chelating nature of the 2-SPv ligands. Similar distances exist $^{n}Bu_{2}Sn(2-SPy-5-NO_{2})_{2}$ [Sn—N = 2.77 (1) Å; in Domazetis, James, Mackay & Magee, 1979] and shorter values are found in $Cl_2Sn(2-SPy)_2$ [Sn-N = 2.271 (9) and 2.256 (9) Å; Masaki, Matsunami & Ueda, 1978]. The Sn—S bond distances [Sn-S =2.485 (1) and 2.476 (2) Å] are essentially the same as in "Bu₂Sn(2-SPy-5-NO₂)₂ [Sn—S = 2.477 (3) Å; Domazetis, James, Mackay & Magee, 1979] or $Ph_2Sn(S_2COEt)_2$ [Sn—S = 2.482 (1) and 2.500 (1) Å; Donoghue & Tiekink, 1991]. The C-Sn-C axis is bent [125.5 (1)°] towards the coordinative Sn-N bonds. No intermolecular distances exist which are shorter than the sum of the van der Waals radii.

REGULAR STRUCTURAL PAPERS

	C(45)0.0743 (3) 0.0383 ((2) -0.2225(2)	0.0724
	C(46) -0.0094 (3 C(41) 0.1046 (3) 0.0778 () 0.1265 ($\begin{array}{ll} (2) & -0.1219(2) \\ (2) & -0.1097(2) \end{array}$	0.0558 0.0451
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å	Table 2. Geometric parameters (Å, °)			
Cell parameters from 50 reflections $\theta = 7.5-15.1^{\circ}$ $\mu = 1.41 \text{ mm}^{-1}$ T = 291 (1) K Block $0.2 \times 0.1 \times 0.1 \text{ mm}$ Colourless	$\begin{array}{l} Sn(1)C(31)\\ Sn(1)C(41)\\ Sn(1)S(2)\\ Sn(1)S(2)\\ Sn(1)N(1)\\ Sn(1)N(2)\\ S(1)C(12)\\ N(1)C(12)\\ N(1)C(12)\\ N(1)C(16)\\ C(13)C(14) \end{array}$	2.132 (3) 2.130 (2) 2.485 (1) 2.476 (2) 2.636 (4) 2.698 (4) 1.756 (5) 1.326 (5) 1.326 (5) 1.348 (7) 1.365 (9)	$\begin{array}{c} C(14)-C(15)\\ C(15)-C(16)\\ C(12)-C(13)\\ S(2)-C(22)\\ N(2)-C(22)\\ N(2)-C(26)\\ C(22)-C(26)\\ C(22)-C(23)\\ C(23)-C(24)\\ C(24)-C(25)\\ C(25)-C(26) \end{array}$	1.367 (8) 1.389 (7) 1.399 (6) 1.752 (4) 1.335 (7) 1.336 (6) 1.393 (7) 1.360 (8) 1.36 (1) 1.38 (1)
$R_{\rm int} = 0.027$	$\begin{array}{l} C(31) - Sn(1) - S(1) \\ C(31) - Sn(1) - N(1) \\ C(41) - Sn(1) - S(1) \\ C(41) - Sn(1) - N(1) \\ N(1) - Sn(1) - N(2) \end{array}$	108.29 (9) 81.6 (1) 109.77 (8) 84.4 (1) 151.5 (1)	$\begin{array}{l} C(31) - Sn(1) - S(2) \\ C(31) - Sn(1) - N(2) \\ C(41) - Sn(1) - S(2) \\ C(41) - Sn(1) - N(2) \\ S(1) - Sn(1) - S(2) \end{array}$	111.74 (9) 85.0 (1) 107.68 (9) 83.1 (1) 87.15 (5)
$\theta_{\text{max}}^{-} = 25^{\circ}$ $h = -12 \rightarrow 12$ $k = 0 \rightarrow 22$ $l = -16 \rightarrow 16$ $f = -16 - 16$	$\begin{array}{l} N(1) - Sn(1) - S(2) \\ N(1) - Sn(1) - S(1) \\ Sn(1) - N(1) - C(12) \\ Sn(1) - N(1) - C(16) \\ Sn(1) - S(1) - C(12) \\ S(1) - C(12) - N(1) \end{array}$	148.02 (8) 60.88 (8) 94.7 (3) 147.2 (3) 90.1 (1) 114.1 (3)	$\begin{array}{l} C(31) - Sn(1) - C(41) \\ N(2) - Sn(1) - S(2) \\ Sn(1) - N(2) - C(22) \\ Sn(1) - N(2) - C(26) \\ Sn(1) - S(2) - C(22) \\ S(2) - C(22) - N(2) \end{array}$	125.5 (1) 60.52 (8) 92.9 (2) 148.7 (3) 91.5 (2) 115.1 (3)
frequency: 150 min intensity variation: none	C(12)-N(1)-C(16)N(1)-C(12)-C(13)S(1)-C(12)-C(13)C(12)-C(13)-C(14)C(13)-C(14)-C(15)C(14)-C(15)-C(16)N(1)-C(16)-C(15)	118.0 (4) 123.0 (4) 122.8 (3) 117.5 (4) 120.9 (5) 118.1 (5) 122.3 (4)	C(22)-N(2)-C(26)N(2)-C(22)-C(23)S(2)-C(22)-C(23)C(22)-C(23)-C(24)C(23)-C(24)-C(25)C(24)-C(25)-C(26)N(2)-C(25)-C(25)	118.3 (4) 121.8 (4) 123.1 (4) 119.1 (5) 119.3 (6) 119.5 (6) 121.9 (5)
	Mo K α radiation $\lambda = 0.71073$ Å Cell parameters from 50 reflections $\theta = 7.5 - 15.1^{\circ}$ $\mu = 1.41 \text{ mm}^{-1}$ T = 291 (1) K Block $0.2 \times 0.1 \times 0.1 \text{ mm}$ Colourless $R_{\text{int}} = 0.027$ $\theta_{\text{max}} = 25^{\circ}$ $h = -12 \rightarrow 12$ $k = 0 \rightarrow 22$ $l = -16 \rightarrow 16$ 6 standard reflections frequency: 150 min intensity variation: none	$\begin{array}{cccc} C(45) & -0.0743 (3) \\ C(46) & -0.0094 (3) \\ C(41) & 0.1046 (3) \\ \end{array}$ $\begin{array}{c} \text{Mo } K\alpha \text{ radiation} \\ \lambda = 0.71073 \text{ Å} \\ \hline \text{Cell parameters from 50} \\ \text{reflections} \\ \theta = 7.5 - 15.1^{\circ} \\ \mu = 1.41 \text{ mm}^{-1} \\ T = 291 (1) \text{ K} \\ \hline \text{Block} \\ Call block \\ \hline \text{Colourless} \\ \end{array}$ $\begin{array}{c} \text{Sn}(1)-C(31) \\ \text{Sn}(1)-C(41) \\ \text{Sn}(1)-S(1) \\ \text{Sn}(1)-N(1) \\ \text{T} = 291 (1) \text{ K} \\ \hline \text{Sn}(1)-C(12) \\ \text{N}(1)-C(12) \\ \text{O.2 } \times 0.1 \times 0.1 \text{ mm} \\ \text{N}(1)-C(12) \\ \hline \text{Colourless} \\ \end{array}$ $\begin{array}{c} \text{Call block} \\ C$	$\begin{array}{cccc} C(45) & -0.0743 (3) & 0.0383 \\ C(46) & -0.0094 (3) & 0.0778 \\ C(41) & 0.1046 (3) & 0.1265 \\ \end{array}$ $\begin{array}{cccc} Mo \ K\alpha \ radiation \\ \lambda = 0.71073 \ \AA \\ \end{array}$ $\begin{array}{cccc} Table 2. \ Geometric \\ Sn(1)-C(31) & 2.132 (3) \\ Sn(1)-C(41) & 2.130 (2) \\ Sn(1)-C(41) & 2.130 (2) \\ Sn(1)-S(2) & 2.476 (2) \\ \mu = 1.41 \ mm^{-1} \\ Sn(1)-N(2) & 2.698 (4) \\ Slock \\ \end{array}$ $\begin{array}{cccc} Sn(1)-C(12) & 1.756 (5) \\ Slock \\ Slock \\ Slock \\ Slock \\ Slock \\ O.2 \times 0.1 \times 0.1 \ mm \\ N(1)-C(16) \\ Colourless \\ \end{array}$ $\begin{array}{cccc} C(31)-Sn(1)-S(1) \\ C(31)-Sn(1)-S(1) \\ C(41)-Sn(1)-S(1) \\ Sn(1)-N(1) \\ Slock \\ Slock \\ N(1)-C(14) \\ Sn(1)-N(1) \\ Slock \\ N(1)-C(14) \\ Slock \\ N(1)-Sn(1)-Sn(1) \\ Slock \\ Slock \\ N(1)-Sn(1)-Sn(1) \\ Slock \\ Slock \\ N(1)-Sn(1)-Sn(1) \\ Slock \\ Slock \\ Slock \\ N(1)-Sn(1)-Sn(1) \\ Slock \\ Slock \\ Slock \\ N(1)-Sn(1)-Sn(1) \\ Slock \\ Slock \\ Slock \\ Slock \\ N(1)-Sn(1)-Sn(1) \\ Slock \\ N(1)-Sn(1)-Sn(1) \\ Slock \\ Slock \\ Slock \\ Slock \\ Slock \\ N(1)-Sn(1)-Sn(1) \\ Slock \\ Slock$	$\begin{array}{cccc} C(45) & -0.0743 (3) & 0.0383 (2) & -0.2225 (2) \\ C(46) & -0.0094 (3) & 0.0778 (2) & -0.1219 (2) \\ C(41) & 0.1046 (3) & 0.1265 (2) & -0.1097 (2) \end{array}$ $\begin{array}{cccc} Mo \ K\alpha \ radiation \\ \lambda = 0.71073 \ \dot{A} \end{array} \qquad $

Refinement

Refinement on F	Only H-atom U's refined
Final $R = 0.031$	$w = 1.0/[\sigma^2 F$
wR = 0.042	+ $(0.003751F^2)$]
S = 0.83	$(\Delta/\sigma)_{\rm max} = 0.03$
3170 reflections	$\Delta \rho_{\rm max}$ = 0.4 e Å ⁻³
221 parameters	$\Delta \rho_{\rm min}$ = -0.6 e Å ⁻³

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
	x	y	z	$U_{\rm eq}$
Sn(1)	0.20888 (3)	0.18288 (1)	0.04679 (2)	0.0463
S(1)	0.3661 (1)	0.09393 (8)	0.1893 (1)	0.0641
N(1)	0.4478 (3)	0.1350 (2)	0.0268 (3)	0.0482
C(12)	0.4837 (4)	0.0899 (2)	0.1157 (3)	0.0488
C(13)	0.6067 (4)	0.0447 (3)	0.1498 (4)	0.0602
C(14)	0.6928 (5)	0.0482 (3)	0.0881 (5)	0.0685
C(15)	0.6600 (5)	0.0948 (3)	-0.0031 (4)	0.0686
C(16)	0.5342 (5)	0.1366 (3)	-0.0332 (4)	0.0594
S(2)	0.0452 (1)	0.17899 (7)	0.1526(1)	0.0625
N(2)	-0.0333 (4)	0.2664 (2)	-0.0245 (3)	0.0580
C(22)	-0.0724 (4)	0.2433 (3)	0.0596 (4)	0.0554
C(23)	-0.1984 (5)	0.2683 (3)	0.0709 (5)	0.0703
C(24)	-0.2855 (6)	0.3166 (3)	-0.0071 (7)	0.0854
C(25)	-0.2467 (7)	0.3400 (4)	-0.0930 (5)	0.0863
C(26)	-0.1198 (6)	0.3141 (3)	-0.1002 (5)	0.0759
C(32)	0.2680 (3)	0.3435 (2)	-0.0138 (2)	0.0692
C(33)	0.3401 (3)	0.4119 (2)	0.0016 (2)	0.0843
C(34)	0.4627 (3)	0.4241 (2)	0.0982 (2)	0.0894
C(35)	0.5133 (3)	0.3680 (2)	0.1794 (2)	0.1022
C(36)	0.4412 (3)	0.2996 (2)	0.1640 (2)	0.0759
C(31)	0.3185 (3)	0.2874 (2)	0.0674 (2)	0.0492
C(42)	0.1537 (3)	0.1356 (2)	-0.1980 (2)	0.0531
C(43)	0.0889 (3)	0.0961 (2)	-0.2987 (2)	0.0672
C(44)	-0.0251 (3)	0.0475 (2)	-0.3109 (2)	0.0724

Single crystals were obtained from chloroform after adding petroleum ether (b.p. 313-333 K). Diffractometer data were corrected for Lorentz-polarization effects. Systematic absences (h0l) l = 2n + 1 and (0k0) k = 2n + 1 conform to space group $P2_1/c$. The structure was solved via Patterson function, ΔF syntheses and full-matrix least squares with anisotropic displacement parameters for all non-H atoms and a common isotropic displacement parameter for H atoms, which were placed in geometrically calculated positions (C-H 0.96 Å). Atomic scattering factors for neutral atoms and real/imaginary dispersion terms were taken from International Tables for X-ray Crystallography (1974, Vol. IV). Programs used: PARST (Nardelli, 1983), SHELXTL-Plus (Sheldrick, 1987), SHELX76 (Sheldrick, 1976), PCK83 (Williams, 1984), PLATON (Spek, 1982) and MISSYM (Le Page, 1987).

Financial support from Fonds der Chemischen Industrie is gratefully acknowledged.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, complete geometry, least-squares-planes data and dihedral angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71178 (28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1057]

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

- Domazetis, G., James, B. D., Mackay, M. F. & Magee, R. J. (1979). J. Inorg. Nucl. Chem. 41, 1555-1562.
- Donoghue, N. & Tiekink, E. R. T. (1991). J. Organomet. Chem. 420, 179-184.

Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.

- Masaki, M., Matsunami, S. & Ucda, H. (1978). Bull. Chem. Soc. Jpn, 51, 3298-3301.
- Mullins, F. A. (1979). J. Inorg. Nucl. Chem. 41, 463-468.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet R3m/V crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- Spek, A. L. (1982). The EUCLID Package. Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
- Williams, D. E. (1984). PCK83. Crystal and Molecular Packing Analysis Program. QCPE Program No. 481. Department of Chemistry, Indiana Univ., USA.

Acta Cryst. (1993). C49, 1737-1739

Structure of Dioxo[N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine]vanadium(V) Chloride Monohydrate, [VO₂(tpen)]Cl.H₂O

ADEMIR NEVES

Universidade Federal de Santa Catarina, Departamento de Química, 88.049 Florianópolis – Santa Catarina, Brazil

MANFREDO HÖRNER AND HERTON FENNER

Universidade Federal de Santa Maria, Departamento de Química, 97.111 Santa Maria – RS, Brazil

JOACHIM STRÄHLE

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany

(Received 25 November 1992; accepted 24 March 1993)

Abstract

In the complex cation of the title compound (1), with site symmetry C_2 , the VO₂ group is coordinated by tpen via two ethylenediamine N atoms and two pyridyl N atoms. The VO₂ moiety shows cis configuration with an O(1)—V—O(1') angle of 107.90 (2)° and short V—O distances of 1.615 (2) Å.

Comment

Recently the synthesis, magnetism and crystal structure of the first binuclear vanadyl-tpen [tpen = N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine] complex, containing a syn-V₂O₂(μ -OH)²⁺₂ core, was reported (Neves, Wieghardt, Nuber & Weiss, 1988). Here we describe the molecular structure of an octahedral *cis*-dioxo vanadium(V) complex with tpen as tetradentate ligand. [VO₂(tpen)]⁺ represents the first cationic species of this class of complexes in which the *cis*-VO₂ entity is bonded exclusively by N-donor atoms of a neutral ligand.

The title compound is built up by discrete mononuclear $[VO_2(tpen)]^+$ cations, uncoordinated Cl anions, and water molecules of crystallization. The vanadium(V) ion is in a pseudo-octahedral environment in which the VO₂ moiety is in the expected *cis* configuration and lies trans to the N atoms of the ethylenediamine backbone. The coordination sphere around the V atom is completed by two pyridyl N atoms, while two pendant pyridyl groups remain uncoordinated. The molecule has a crystallographically imposed twofold axis which passes through the V-atom centre and the midpoint of the C(3)—C(3') bond (Fig. 1). The five-membered ring (VN_2C_2) formed by chelation of the ethylenediamine backbone has the usual skew conformation with a torsion angle N(1)—C(3)—C(3')—N(1') of 28.1°; the two atoms of the ethylene bridge are displaced by 0.35 (2) Å on opposite sides of the V–N(1)–N(1') plane. The sum of the interior angles is 514.6°. This value is in excellent agreement with that observed for $[VO_2(edta)]^{3-1}$ [515.0° (edta = ethylenediaminetetraacetate) (Scheidt, Countryman & Hoard, 1971)]. The two remaining five-membered rings are formed by the 2-pyridylmethyl groups. An analysis of the planarity of these rings (sum of the interior ring angles = 521.2°) shows the extent of puckering in the inner regions of these rings (Mandel & Douglas, 1989). Similar values have been observed for glycifive-membered rings in $[VO_2(edtaH_2)]^$ nato (Scheidt, Collins & Hoard, 1971) and [VO₂(edta)]³ (Scheidt, Countryman & Hoard, 1971).

The VO₂ entity in the *cis* configuration has an O—V—O obtuse angle of 107.90 (2)°, significantly deviated from the ideal angle of 90°. As expected, the opposite N(1)—V—N(1') angle is acute, and has a value of 75.52 (1)°. The O—V—O angle of 107.90 (2)° is almost equal to those observed in $[VO_2(edtaH_2)]^-$ (107.1°) and $[VO_2(edta)]^{3-}$ (107.0°), and somewhat larger than in other octahedral *cis*-VO₂ complexes, which have values in the range 104–106° (Drew, Einstein & Gransden, 1974; Neves, Walz, Wieghardt, Nuber & Weiss, 1988).

The short V—O distances of 1.615(2) Å in (1) indicate strong multiple-bond character as previously discussed by other authors (Scheidt, Tsai & Hoard, 1971). However, it is important to note that these V=O bonds are significantly shorter (by 0.025 Å) than the mean values reported in the above literature